
Gate Replacement Techniques for Simultaneous Leakage and

Aging Optimization

Yu Wang1, Xiaoming Chen1, Wenping Wang2, Yu Cao2, Yuan Xie3, Huazhong Yang1

1Dept. of E.E., TNList, Tsinghua Univ., Beijing, China
2Dept. of E.E., Arizona State Univ., USA, 3Dept. of CSE, Pennsylvania State Univ., USA

1 Email: yu-wang@mail.tsinghua.edu.cn

Abstract—1As technology scales, the aging effect caused by Negative
Bias Temperature Instability (NBTI) has become a major reliability

concern for circuit designers. On the other hand, reducing leakage
power remains to be one of the design goals. Because both NBTI-
induced circuit degradation and standby leakage power have a strong

dependency on the input vectors, Input Vector Control (IVC) technique
may be adopted to mitigate leakage and NBTI. However, IVC technique

is in-effective for larger circuits. Therefore, in this paper, we propose
two fast gate replacement algorithms together with optimal input vector

selection to simultaneously mitigate leakage power and NBTI induced
circuit degradation: Direct Gate Replacement (DGR) algorithm and

Divide and Conquer Based Gate Replacement (DCBGR) algorithm. Our
experimental results on 20 benchmark circuits at 65nm technology node
reveal that: 1) Both DGR and DCBGR algorithms outperform pure IVC

about on average 20% for three different object functions: leakage power
reduction only, NBTI mitigation only, and leakage/NBTI co-optimization.

2) The DCBGR algorithm leads to better optimization results and save
on average 100X runtime compared with the DGR algorithm.

I. INTRODUCTION

As technology scales, Negative Bias Temperature Instability

(NBTI) is emerging as one of the major reliability degradation

mechanisms [1]. NBTI occurs when PMOS transistors are negatively

biased (i.e., Vgs = −Vdd) at elevated temperature, causing a shift

in threshold voltages. Over a long period of time, such Vth shifts

can potentially cause a significant increase in the delay of PMOS

devices [2], and result in about 10-20% degradation in circuit speed,

thus may lead to a functional failure [3]. The impact of NBTI

on circuit performance has become a key issue with technology

scaling [4]. Consequently, it is important to model, analyze, and

mitigate the impact of the NBTI effect on the circuit performance.

Based on the various circuit level NBTI degradation analysis

models [5]–[7], previous works estimated the NBTI induced life-

time degradation with the assumption that the circuits operate all

the time. However, in practical not every application requires the

underlying hardware to operate at the highest performance level all

the time. Modules in which the computation is burst are often idle.

There are periods during which the PMOS transistors are under static

stress condition. Many PMOS transistors affected by NBTI can be

found in both combinational and storage blocks when the gate inputs

are set to ”0” during the standby time, leading to a larger degradation.

Consequently, it is important to accurately estimate the NBTI-induced

degradation at the standby time in order to safely guard-band the

circuit performance, and to find design techniques to mitigate such

degradation.

Input Vector Control (IVC) is a well-studied technique for leakage

power reduction [8] at the standby time. Since NBTI also depends

on the input patterns of PMOS devices, IVC can be used to mitigate

1This work was supported by National Natural Science Foundation of China
(No. 60870001, No.90207002) and TNList Cross-discipline Foundation. Yu
Cao’s work was partially supported by GSRA/SRC. Yuan Xie’s work was
supported in part by grants from NSF 0643902, 0702617, and a SRC grant.

the NBTI effect during the standby mode. Fig. 1 shows the relation

between the circuit leakage power and the circuit delay degradation

caused by NBTI under different input vectors. We can see that given

the required constraint for both leakage and delay degradation (the

shadow region in Fig. 1), a set of input vectors can be preselected

and applied to the entire circuit at the standby mode, such that both

the total leakage power and delay degradation are minimized. In

this example, less than 1% of sampled input patterns provides the

minimum of both circuit degradation and the leakage.

Fig. 1. Leakage power versus delay degradation for different input vectors.

Wang et al. [9] proposed a method to select the best input vectors

from the minimum leakage vector set. However, the best input vectors

for minimum leakage power may not be the best input vectors to

minimize NBTI-induced circuit degradation and they didn’t consider

the difference of NBTI effects during active and standby time, the

results claimed only 3% circuit degradation saving at the 90nm

technology node. Jaume et al. [10] used different input vectors to

change the zero-probability of internal PMOS transistors, so that the

PMOS transistors’ degradation was evenly distributed. The effect of

this technique on an adder is evaluated, however, detailed research

for random logic is needed.

Although pure IVC techniques have been evaluated for mitigating

NBTI, they are not very effective when the circuit becomes larger.

How to efficiently find the optimal results for leakage and NBTI

induced circuit degradation remains a problem. There is no literature

about simultaneously NBTI and leakage mitigation through Internal

Node Control (INC) [11]–[13] which is proved to be more effective

to reduce leakage power than pure IVC.

In this paper, we propose two fast gate replacement algorithms

which simultaneously mitigate the leakage power and NBTI induced

circuit degradation. The contributions of this paper can be summa-

rized in the following aspects:

1) The gate replacement techniques are for the first time used for

NBTI mitigation. Based on the basic gate replacement technique for

978-3-9810801-5-5/DATE09 © 2009 EDAA

NBTI and leakage reduction, we first propose a Direct Gate Re-

placement (DGR) algorithm and then propose a Divide and Conquer

Based Gate Replacement (DCBGR) algorithm to further improve the

NBTI/leakage reduction achievement and the optimization speed.

2) The complexity of DGR algorithm is O(n2) in the worst case

and O(n) on average; while the complexity of DCBGR is O(n).

Therefore, our algorithms will serve well when circuit scale becomes

larger.

3) Our experimental results show that: for larger circuits, IVC

technique is less effective, while INC through gate replacement

technique is more effective for both NBTI and leakage mitigation.

4) Although the gate replacement technique is compatible with

standard cell design flow, the area penalty remains a problem. Our

DCBGR results for leakage only and NBTI only show that the area

penalty for leakage reduction is larger: on average 13.26%, while the

area penalty for NBTI mitigation is smaller: on average 3.53%.

II. PRELIMINARIES

A. Degradation Model under NBTI Effect

Depending on the bias condition of PMOS transistor, NBTI has

two phases: stress phase and recovery phase. In the stress phase

(Vgs = 0), the holes in the channel weaken the Si-H bonds,

which results in the generation of the positive interface charges and

hydrogen species, correspondingly, threshold voltage (Vth) of the

PMOS transistors increases. During the recovery phase (Vg = VDD),

the interface traps can be annealed by the hydrogen species and thus,

Vth degradation (∆Vth) is partially recovered. If a PMOS device is

always under stress condition, it is referred as static NBTI. Otherwise,

both stress and recovery exist during active circuit operation, it is

described as dynamic NBTI.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.00

0.05

0.10

0.15

0.20

0.25

0.30

V
th
 D

e
g
ra

d
a
ti
o
n
 (

V
)

Input Signal Probability

65nm PMOS, T = 105oC

Dynamic NBTI

Static NBTI

Time = 1 year

Time = 10 years

Fig. 2. Static and dynamic NBTI degradation for different input signal
probabilities.

Based on the reaction-diffusion mechanism, real time NBTI model

is developed in [14], [15]. For dynamic NBTI, there is a sudden

change at the beginning of the recovery phase, which has a sig-

nificant impact on the estimation of NBTI degradation. A long-

term prediction model is derived for both static and dynamic NBTI

in [15]. Fig. 2 shows ∆Vth prediction by using the proposed model.

The big difference between the static and dynamic NBTI, has also

been observed in silicon data [16], [17]. Therefore, the simple static

analysis may cause an extremely pessimistic estimation of NBTI-

induced degradation and consequently, results in over-margining in

design stage. On the contrary, only dynamic NBTI model for the total

lifetime without considering the static NBTI effect during the standby

time may lead to an underestimation of NBTI-induced performance

degradation. In this paper, we use dynamic NBTI model in the active

time and static NBTI model in the standby time.

The delay difference due to ∆Vth is given by [9], [18]:

∆d(v) = α∆Vth/(Vgs − Vth) × d(v) (1)

Statistical Signal

Probability (SP)

of inputs

Standby time

internal node

state

Transistor level

NBTI modeling

Input Vector

Generator

Run time

internal

node SP

Commercial

Static Timing

Analysis tool

Lookup

table based

leakage

calculation

Timing

Libs

Path-based NBTI-aware Timing

Analysis

Potential

Critical

Paths (PCP)

NBTI-induced circuit degradation and leakage power

Logic Simulator

Active time Standby time

Fig. 3. The NBTI and leakage co-simulation flow.

where d(v) is the original delay of gate v which can be extracted from

the commercial STA tools. There could be several ∆Vth of different

PMOS’s in one gate. In such cases, we just select the largest one to

calculate the gate delay degradation, which is the worst case delay

degradation.

B. NBTI/leakage co-simulation flow

Fig.3 shows our NBTI/leakage co-simulation flow. For a given

circuit, commercial static timing analysis tool is firstly used to

generate the Potential Critical Paths (PCPs) using standard timing

libraries. When the circuit is in the active mode, statistical information

for input Signal Probability (SP) is used to generate the internal node

SP. When circuit is in the standby mode, logic simulator is used

to generate the voltage level of each internal node. The active time

internal node SP and the standby time internal node states are used to

estimate the NBTI-induced Vth degradation through transistor level

NBTI modeling. The leakage power is estimated based on the input

vector aware leakage lookup tables. Based on the Vth degradation

estimation and the original timing libraries, a fast path-based NBTI-

aware timing analysis is performed. We modify the input vector

generation module to implement our gate replacement algorithms.

III. GATE REPLACEMENT (GR) TECHNIQUE

The gate replacement technique is to replace a gate G(−→x) by

another library gate G(−→x , sleep) [12], where −→x is the input vector

of gate G, sleep is the sleep signal of the circuit, such that:

1) G(−→x , 0) = G(−→x), when the circuit is active (sleep = 0);

2) G(−→x , 1) has smaller leakage power or can serve as an INC point

to mitigate NBTI effect when the circuit is standby (sleep = 1).

1) Gate replacement for NBTI: The NBTI effect on a PMOS

transistor depends on the stress condition: Vgs and stress time, which

are both related to the input state of a gate. Consequently, all 1’s will

be the best input pattern with the smallest NBTI-induced degradation

for all gate types. Fig. 4 is an example that shows how to mitigate

NBTI-induced degradation by gate replacement. The NAND2 gate

G2’s delay will be larger if G1’s output is 0 at the circuit standby

time. Through gate replacement technique, we replace G1 by an

NAND3 gate so that the output is changed to 1. Hence the NBTI

effect on G2 is mitigated during the standby time.

G1

G2

1
1

0
G1

G2

1
1

1
Replace

sleep

Fig. 4. A gate replacement example for NBTI mitigation.

2) Gate replacement for leakage: We call a gate at its WLS (worst

leakage state) [12] when its input vector leads to the largest leakage

power. Fig. 5 shows how to replace an NAND2 gate to reduce its

leakage power. The NAND2 gate is in WLS with leakage power

454.71nW, when its input is 11. We replace it with an NAND3 gate,

of which the leakage power is 249.1nW during the standby time.

Then we can save up to 45.2% of the leakage power.

Replace
1

1

1

1

sleep

 GG

Fig. 5. A gate replacement example for leakage reduction.

3) Different input vector dependency of NBTI and leakage: All 1’s

will be the best input pattern with the smallest NBTI-induced degra-

dation for all gate types. Meanwhile, leakage power varies among

different input vectors. We simulate all the cells (NAND/AND,

NOR/OR, INV, BUF) in the library, and find out that the best case

input patterns to mitigate the leakage for NAND/AND/INV gates are

all 0’s at the inputs, while for NOR/OR/BUF gates are all 1’s at

the inputs. Therefore, although NBTI and leakage both depend on

the input patterns, we can see the discrepancy: for NAND/AND/INV

gates, the input pattern for least leakage will lead to worst NBTI-

induced delay degradation; on the contrary, for NOR/OR/BUF gates,

the input pattern for least leakage will lead to best case NBTI-induced

delay degradation. Consequently, if we use pure IVC technique, the

best input vector for leakage may lead to worse NBTI induced

degradation, and vice versa. Therefore, we have to get a thorough

control of internal node state through INC techniques, such as gate

replacement technique, so that the internal node state can be carefully

chosen to meet both leakage power and lifetime requirements.

4) Overhead analysis of gate replacement: Gate replacement

will introduce delay and area overhead; however, these overhead

can be controlled by adding delay and area constraints during the

optimization algorithm, or transistor re-sizing. In this paper, the delay

constraint is set to be less than 5% of the original delay at time 0

after gate replacement. From our experimental results, although delay

requirement at time 0 is relaxed, we will get a better circuit delay

after 10 years. For power overhead, the dynamic power overhead

is trivial, because the sleep signal remains constant at both active

and standby mode; the leakage power overhead during circuit active

mode caused by the leakage difference of different gate types can be

neglected if the standby time is long enough.

IV. GATE REPLACEMENT ALGORITHMS

In this section, we propose our two fast gate replacement algo-

rithms: Direct Gate Replacement algorithm and Divide and Conquer

Based Gate Replacement algorithm.

A. Direct Gate Replacement (DGR) algorithm

Similar to the previous gate replacement algorithm [12], there

are also two key steps for the Direct Gate Replacement: 1) Get

the optimal input vector for circuits; 2) Gate replacement based

on the optimal input vector. We follow the two steps and amend

the previous algorithm to further consider NBTI induced circuit

degradation together with leakage power.

1) Get the optimal input vector: An optimal input vector is chosen

from 10K random input vector search. Since we are considering NBTI

effect and leakage power together, the object function is as follows:

F (Dcircuit, Pleakage) = A × Dcircuit + B × Pleakage (2)

where Dcircuit is the circuit delay after 10 years; the Pleakage is the

circuit leakage power at time 0. A and B are two weight constants

for circuit designers to balance the leakage power requirement and

circuit lifetime requirement. The best leakage and circuit delay results

of random search are used as our reference.

2) Direct Gate Replacement based on the optimal input vector:

In the DGR algorithm, we first arrange all the gates in the circuit

into a topological order. The topological order guarantees that when

we find a gate at its WLS, all its predecessors have already been

considered. Then all the gates are evaluated one by one according to

this order. The detailed algorithm is shown in Fig. 6. Firstly, all the

critical paths are investigated to mitigate the NBTI effect, and then

we evaluate the gates in the circuits to further reduce the leakage

power.

Direct Gate Replacement (DGR) algorithm

Input: {G1 ,…, Gn} all the gates in topological order of the circuit; SLEEP: the sleep signal;

{x1 ,…, xm}:input vectors

Output: a circuit 1) of the same functionality when SLEEP=0 and 2) with less leakage and

NBTI-induced degradation when SLEEP=1

1 perform NBTI mitigation algorithm //NBTI mitigation Part

2 for i=1 to n do //Leakage Reduction Part

3 if Gi is at WLS and not visited

4 if Gi is not in critical path then include Gi in selection S

5 else if Gi’s output will not be changed after replacement then include Gi in selection S

6 while there is new addition to S

7 for each newly selected gate G in S do

8 temporarily replace G

9 if G’s output is changed then

10 include all G’s fanout gates in selection S that are unvisited and their

output will not be changed after replacement

11 calculate leakage change caused by the replacement

12 if there is a leakage reduction then

13 mark all the gates in S as visited

14 make all the replacement above

15 else mark Gi as visited only

16 empty S

17 else mark Gi as visited

18 end

Fig. 6. Pseudo code for Direct Gate Replacement algorithm.

NBTI mitigation in the critical paths (Fig. 7): The first line of

DGR algorithm Fig. 6 is to perform the NBTI mitigation algorithm

shown in Fig. 7. When we consider a gate Gi, the critical fin-in gate

Gc on the critical path is first selected (line 2). To mitigate the effect

of NBTI in the critical path, the output value of Gc should be set

to 1. If the output of Gc is 0 and there is a library gate G
′

c that

can replace Gc, then we replace Gc with G
′

c (line 3-4). After the

replacement, if the output is not changed to 1, then we will try to

find all the fin-in gates of gate G
′

c, and replace them according to

NBTI mitigation algorithm

Input: {G1 ,…, Gn}: the gates in topological order of the circuit

(1) whole circuit for DGR; (2) tree circuit for DCBGR

Output: {R1 ,…, Rn}: replace Gi if Ri=true

1 for i=1 to n do

2 search the previous critical gate Gc in the critical path of Gi

3 if output(Gc)=0 then

4 Replace(Gc)

5 if output(Gc)=1 then

6 mark the replacement of Gc

7 else

8 search all the fanin gates of Gc and try to replace them according to the type of

Gc to make output of Gc be 1

9 if output(Gc)=1 then

10 mark the replacement above

11 end

Fig. 7. Pseudo code for NBTI mitigation algorithm.

G
′

c’s type to make the output value of G
′

c be 1 (line 7-8).

Leakage power reduction (Fig. 6): After the gate replacement

for NBTI mitigation, all the gates are visited by topological order

again. We skip the gates that 1) are not in WLS or 2) are in critical

paths and their outputs will be changed after replacement or 3) have

already been visited, until we find a new gate Gi at its WLS (line

3-5). Then we temporarily replace Gi and keep a set S that includes

all the unvisited gates affected by the replacement of Gi. All the

gates in S are temporarily replaced (line 6-10). The total leakage

change caused by the replacement are calculated (line 11). If there is

leakage reduction, all the gates in the set S are marked as replaced

and visited(line 12-14). Otherwise we only simply mark Gi as visited

(line 15). This algorithm will not be over until all the gates have been

visited.

Complexity: The complexity of this algorithm is O(n2), where n
is the total gate number in the circuit.

B. Divide and Conquer Based Gate Replacement(DCBGR) algorithm

Although DGR algorithm described in the previous subsection

can achieve better results compared with the results of pure IVC

technique, the complexity is O(n2) which is not scalable when

the circuit size becomes larger. On the other hand, since the DGR

algorithm is performed based on an initial input vector, the final

optimization results may still have a gap with the optimal ones.

We further propose a Divide and Conquer Based Gate Replace-

ment (DCBGR) algorithm based on the improved gate replacement

algorithm in [11]: 1) the circuit is divided into several trees; 2)our

dynamic programming algorithm is performed on the tree circuits

to achieve better results faster; 3) we adjust the dangling nodes in

the whole circuit, and continue to perform the algorithm until it

converges.

1) Divide the circuit into trees: At the beginning, we divide the

circuit into tree circuits by deleting some connections between gates

until every gate fans out to at most one gate. For example, if a gate

G fans out to k gates G1, ...,Gk, we keep one connection Gi and

delete other k − 1 connections. We keep the connection that has the

longest path from Gi to the outputs of the circuit. After deleting the

connections, there are many dangling inputs. In this algorithm, all the

dangling inputs are always equal to the output of their fan-in gates

before deleting the connections.

2) Gate replacement for trees: The detailed algorithm is shown in

Fig. 8, where ij denotes the jth input of Gi; N(i) denotes the input

number of Gi; LK(i, z) denotes the minimum total leakage power

of the subtree rooted at Gi, when its output is z; V (i, z) denotes

the input vector producing LK(i, z); −→x denotes the input vector of

a gate; −→xj denotes the jth bit of −→x ; L(i,−→x) and LR(i,−→x) denote

the leakage power of Gi and replaced Gi respectively; Out(i,−→x)
denotes the output of Gi with its input vector −→x .

Initialization is firstly performed for all the gates from line 1 to 5.

Then we perform the NBTI mitigation algorithm described in Fig. 7.

We modify the algorithm in [11] to serve as our leakage reduction

part.

3) Adjust dangling assignments and perform the algorithm until it

converges: When we have got all the inputs of each gate, we assign

the dangling inputs again by a reverse topological order. If there are

any dangling inputs that have been changed, the algorithm will be

repeated from the most anterior gate in the topological order with

new dangling input values until the algorithm generates the same

input vector or an input vector that has been appeared previously.

4) Complexity: The complexity of NBTI part is O(Kn) where K
is the maximum fan-in number of gates in the circuit before deleting

the connections. The complexity of leakage part is O(n) [11].

Divide and Conquer Based on Gate Replacement algorithm for a tree circuit

Input:{G1 ,…, Gn} all the gates in topological order of a tree circuit

Output: Vopt:the optimal input vector

{Rep1 ,…, Repn}: replace Gi when Rep(i,z)=true and its output is z

1 for i=1 to n do //Initialization

2 if Gi is an input gate then

3 LK(i,z)=0,V(i,z)=z

4 if Gi is in critical path then Output(Gi)=1

5 end

6 perform NBTI mitigation algorithm //NBTI mitigation part

7 for i=1 to n do //Leakage Reduction Part

8 for each valid input vector x

 of Gi do

9 z=Out(i, x

),

()

1

(,) min (,) (,)
N i

j j
valid x

j

LK i z LK i x L i x

! "
 #$ %

& '
(

!!
,

()

1

(,) (,)
N i

j j
j

V i z V i x

!!

"

10 if Gi is not in critical path or in critical path but its output will not be changed after

replacement then

11 temporarily replace Gi

12 if then(,) (,)RL i x L i x)

13

()

1

(,) min (,) (,)
N i

j j R
valid x

j

LK i z LK i x L i x

! "
 #$ %

& '
(

!!
, ,

()

1

(,) (,)
N i

j j
j

V i z V i x

!!

"

14 Rep(i,z)=true

15 end

16 end

17 Vopt=LK(n,0)>LK(n,1)?V(n,1):V(n,0)

18 calculate Rep in reverse topological order

Fig. 8. Pseudo code for Divide and Conquer Based Gate Replacement
algorithm for a tree circuit.

C. C17 circuit as an example of DCBGR algorithm

Fig. 9 shows an example of the DCBGR algorithm for circuit

C17. At the beginning, we divide the circuit into trees by deleting

connections in Fig. 9(1). G1,G4, and G6 have dangling inputs. If we

set the input vector of the circuit to all 0’s then the value of these

dangling inputs are 011, we set 011 to these dangling inputs as their

initial values in Fig. 9(2).

Then we run the algorithm for two different object functions:

leakage power reduction only and NBTI mitigation only. The critical

paths are marked in red in Fig. 9(5). If NBTI mitigation is considered,

the internal node values along these paths should be 1 as more as

possible. Then the dynamic algorithm will generate optimal input

vectors for different object functions (Fig. 9(3)). We calculate all the

logic values in the circuit and assign new dangling inputs in Fig. 9(4).

With the new dangling inputs, the algorithm is repeated again until

the algorithm converges to optimal input vectors for different object

functions as shown in Fig. 9(5). Hence, the optimal input vector for

leakage is 00010 while the optimal input vector for NBTI is 11000.

The detailed results are listed in Table I. DO is the original delay

at time 0. Dnbti is the circuit delay after 10 years. LK is the leakage

power at time 0. The optimal result for NBTI can save the circuit

degradation from 8.79% to 1%, since the NBTI effect are eliminated

G1

G2

G3

G4

G5

G6

0

0

0

0

0

1

1

1

1

0

0

G1

G2

G3

G4

G5

G6

0

1
1

G1

G2

G3

G4

G5

G6

01

01

00

10

10

10

11

01

01

11

10

G1

G2

G3

G4

G5

G6

01

11
01

G1

G2

G3

G4

G5

G6

01

01

00

10

00

10

11

01

11

11

10

(2) (1)

(3) (4) (5)

Leakage

only

0 1

NBTI

only

Fig. 9. An example of DCBGR algorithm for NBTI and leakage mitigation.

when the circuit is standby. The optimal result for leakage can reduce

31.1% leakage power compared with the result for NBTI only.

TABLE I
DCBGR RESULTS FOR C17 CIRCUIT.

Object function DO(ns) Dnbti(ns) Degradation LK(mW)

Leakage only 0.0796 0.0866 8.79% 1.44E-6

NBTI only 0.0796 0.0804 1% 2.09E-6

V. IMPLEMENTATION AND SIMULATION RESULTS

A. Implementation

We implement our NBTI/Leakage co-simulation flow and the

gate replacement algorithms in C++. A commercial static timing

analysis tool PrimeTime from Synopsys is used to perform the timing

analysis and generate the timing report, as well as the internal node

signal probabilities. Benchmark circuits are synthesized using a 65nm

library from industry. Some key technology parameters are: Vdd =

1.0V; |Vth| = 0.20V for both NMOS and PMOS transistors; Tox

= 1.2nm. ISCAS85 benchmark and some arithmetic components

circuits are used to evaluate our algorithms. The active time tem-

perature Tactive and standby time temperature Tstandby are both set

to be 378K corresponding to the worst-case NBTI-induced circuit

degradation and leakage power. Ratio of active and standby time

(RAS) is set to be 1:9. We set input probabilities of all the input

nodes to 0.5 for simplicity. The circuit lifetime is set to be 10 years.

B. Experimental results

1) Random search: Table II shows the results of random search for

all the 20 benchmark circuits. DO is the original delay at time 0. DW

and DB are the worst case and best case NBTI induced delay after

10 years. LKW and LKB are the worst case and best case leakage

power at time 0. These data are generated from 10K input vectors.

The difference of NBTI induced delay degradation is on average 6%

of the original delay; meanwhile the best leakage power can save

on average 8.76% compared with the worst case leakage power. The

results of circuits with more than 500 gates show that the IVC is less

effective for larger circuits.

2) DGR algorithm: Table III shows the optimization results for

leakage only and NBTI only. Dimp is delay improvement after 10

years. LKimp is leakage improvement at time 0. These improvements

are compared with the best results of Random Search in Table II. Our

TABLE II
RANDOM SEARCH RESULTS (10K INPUT VECTORS).

Benchmark Gate# DO DW DB LKW LKB

Circuits (ns) (ns) (ns) (mW) (mW)

pmult4x4 122 2.522 3.154 3.004 1.17E-04 9.89E-05

c499 182 1.471 1.928 1.849 2.38E-04 2.11E-04

log16 256 1.287 1.801 1.675 2.28E-04 2.04E-04

bkung32 271 2.004 2.518 2.291 3.00E-04 2.65E-04

c432 297 3.965 4.972 4.635 2.55E-04 2.29E-04

array8x8 401 4.967 6.286 5.809 4.18E-04 3.46E-04

pmult8x8 490 4.819 6.026 5.74 4.86E-04 4.11E-04

c880 535 2.689 3.296 3.184 4.16E-04 3.76E-04

log32 640 2.138 3.231 3.047 5.67E-04 5.14E-04

c1355 942 3.089 3.733 3.67 6.60E-04 6.32E-04

c1908 977 3.763 4.548 4.355 6.93E-04 6.67E-04

c2670 1173 3.672 4.609 4.395 8.84E-04 8.49E-04

booth9x9 1206 4.195 5.057 4.883 1.14E-03 1.09E-03

log64 1536 3.862 6.259 5.967 1.36E-03 1.24E-03

c3540 1743 4.784 5.954 5.645 1.27E-03 1.20E-03

pmult16x16 1934 10.101 12.544 12.096 1.95E-03 1.67E-03

c5315 2364 4.924 6.15 5.864 1.82E-03 1.72E-03

c7552 3912 4.984 6.214 5.968 2.91E-03 2.79E-03

c6288 6656 17.94 20.886 20.579 4.69E-03 4.61E-03

pmult32x32 7570 20.921 25.784 25.247 7.65E-03 6.95E-03

average 28.00% 22.00% 8.76%

Gate#>500 28.23% 23.30% 6.16%

TABLE III
RESULTS OF DGR ALGORITHM FOR LEAKAGE POWER REDUCTION ONLY

AND NBTI MITIGATION ONLY.

Benchmark For leakage only For NBTI only

Circuits LKimp Runtime ainc Dimp Runtime ainc

(%) (s) (%) (%) (s) (%)

pmult4x4 1.037 1.938 6.81 17.23 0.43 3.546

c499 0.367 3.29 0.242 2.53 0.78 0.161

log16 16.832 5.25 22.2 17.47 1.12 1.316

bkung32 16.501 6.03 12.39 4.87 1.31 0.311

c432 23.638 7.32 25.23 6.16 1.55 5.215

array8x8 0.025 10.75 0.122 10.33 2.24 0.611

pmult8x8 0.0034 16.71 4.44 12.11 3.37 2.375

c880 18.398 19.25 41.6 19.53 4 6.199

log32 17.858 24.75 22.7 16.76 4.87 0.921

c1355 13.073 50.95 59.2 20.986 13.12 6.733

c1908 17.067 55.36 57.5 13.92 12.28 9.538

c2670 14.468 87.73 39.8 9.57 24.56 6.629

booth9x9 14.753 79.57 54.79 29.35 21.6 4.371

log64 18.442 127.6 23.2 19.43 27.1 0.932

c3540 12.496 165.2 46.9 16.35 52.5 7.783

pmult16x16 0.0003 212 4.97 17.8 44.6 2.881

c5315 0.312 315.1 39.8 22.51 109 6.96

c7552 5.678 795 5.8 16.8 409 9.961

c6288 9.049 490.2 13.9 35.19 754 13.249

pmult32x32 0.0234 830.4 0.275 22.29 825 8.318

average 10.00% 165.22 24.09% 16.56% 115.62 4.90%

Gate#>500 10.26% 269.49 30.73% 20.08% 191.47 6.52%

TABLE IV
RESULTS OF DGR ALGORITHM FOR SIMULTANEOUS LEAKAGE AND NBTI

MITIGATION.

Benchmark LKs Ds LKimp Dimp ainc Runtime

Circuits (mW) (ns) (%) (%) (%) (s)

pmult4x4 1.14E-04 3.004 0.198 15.01 4.25 2.08

c499 2.11E-04 1.925 1.78 5.92 0.64 3.52

log16 2.04E-04 1.702 11.31 9.82 14.6 5.49

bkung32 2.69E-04 2.354 13.07 7.23 12.1 6.31

c432 2.38E-04 4.628 23.06 6.428 21.8 7.39

array8x8 4.06E-04 5.832 2.76 7.56 14.6 10.9

pmult8x8 4.71E-04 5.761 0.32 8.49 3.79 16.2

c880 3.80E-04 3.204 23.62 14.48 17.5 12.9

log32 5.19E-04 3.075 15.08 14.24 15.7 24.8

c1355 6.35E-04 3.686 30.63 19.571 25.4 54.5

c1908 6.71E-04 4.371 28.95 19.86 21.2 71.2

c2670 8.57E-04 4.41 22.09 12.69 18.8 97.6

booth9x9 1.09E-03 4.92 28.65 29.2 15.3 90

log64 1.26E-03 5.989 18.39 17.83 17.8 146

c3540 1.21E-03 5.707 21.05 21.25 21.9 259

pmult16x16 1.93E-03 12.14 0.26 18.15 2.61 258

c5315 1.73E-03 5.886 14.52 19.35 20.7 427

c7552 2.79E-03 6.113 21.39 27.54 11.2 1096

c6288 4.62E-03 20.73 46.98 38.53 20.7 1204

pmult32x32 7.55E-03 25.25 0.98 17.1 2.93 1567

average 5.11% 23.11% 16.25% 16.51% 14.18% 267.99

Gate#>500 3.94% 24.13% 20.75% 21.28% 16.18% 441.26

DGR algorithm can outperform the pure IVC about 10% and 16.56%

for leakage only and NBTI only respectively. For larger circuits, we

have slightly more leakage saving but potentially larger NBTI effect

mitigation because the critical paths may be longer in larger circuits.

We also evaluate the runtime and area penalty ainc. The runtime

grows fast when the circuit becomes bigger. For C6288, we may

need several minutes.

Table IV shows the optimization results for simultaneous leakage

and NBTI mitigation. Dimp is the delay improvement after 10 years.

LKimp is the leakage improvement at time 0. The delay and leakage

improvements are compared with the best results of Random Search

results: LKs and Ds, using a weighted object function where leakage

power and NBTI mitigation are treated with equivalent importance.

Although IVC technique can simultaneously mitigate leakage and

NBTI, our DGR performs better: 16.25% more leakage saving and

16.51% more delay compensation. Table IV also shows that the

TABLE V
DCBGR ALGORITHM RESULTS FOR THREE DIFFERENT OBJECT FUNCTIONS.

Benchmark For leakage only For NBTI only Co-optimization

Circuits LKimp Runtime ainc Dimp Runtime ainc LKimp Dimp Runtime ainc

(%) (s) (%) (%) (s) (%) (%) (%) (s) (%)

pmult4x4 12.71 0.047 8.94 12.12 0.015 5.11 11.76 10.4 0.031 7.23

c499 14.04 0.031 1.29 17.79 0.031 0.56 13.59 17.0 0.031 1.29

log16 39.91 0.031 0 49.61 0.047 3.04 30.34 17.47 0.047 21.05

bkung32 40.44 0.047 1.87 14.61 0.047 4.92 23.5 14.61 0.062 1.87

c432 33.41 0.047 16.41 39.88 0.047 5.06 4.98 13.82 0.047 16.64

array8x8 3.91 0.047 6.85 25.53 0.047 2.45 2.95 14.33 0.063 6.85

pmult8x8 8.28 0.078 8.36 7.57 0.078 3.61 7.7 5.97 0.078 7.4

c880 43.35 0.079 19.75 22.91 0.079 3.38 15.52 21.24 0.109 21.16

log32 40.34 0.094 0 60.23 0.11 3.42 31.11 19.87 0.141 21.05

c1355 49.81 0.172 23.8 14.24 0.172 3.73 30.26 13.22 0.234 23.8

c1908 48.24 0.172 24.38 13.88 0.203 4.13 26.11 13.88 0.266 25.84

c2670 43.74 0.297 15.96 16.76 0.328 3.4 20.19 10.44 0.422 17.39

booth9x9 40.56 0.312 8.98 9.93 0.359 2.84 35.2 5.58 0.453 8.98

log64 40.86 0.406 0 67.85 0.484 3.67 31.89 21.07 0.594 21.05

c3540 41.67 0.516 18.17 25.49 0.594 3.25 10.24 20.24 0.735 20.98

pmult16x16 5.7 0.656 7.8 11.38 0.718 2.64 5.38 9.46 0.765 7.28

c5315 39.65 1.031 14.68 9.55 1.188 3.28 15.51 9.55 1.453 17.3

c7552 47.77 2.734 18.76 48.6 3.25 4.12 25.49 19.07 4 19.89

c6288 31.26 10.75 19.15 11.04 11.672 6 28.24 10.83 14.172 19.15

pmult32x32 8.85 16.016 7.44 16.03 16.828 1.88 8.71 14.11 18.266 7.17

average 31.73% 1.68 11.13% 23.65% 1.81 3.52% 18.93% 19.17% 2.098 14.67%

Gate#>500 36.54% 2.76 13.26% 23.95% 2.99 3.53% 22.36% 22.13% 3.46 17.49%

mitigation results for larger circuits are better than the average results,

while larger circuits will introduce larger area penalty since more

gates are replaced.

3) DCBGR algorithm: Table V shows the optimization results

of DCBGR algorithm. All the results are compared with the best

optimization results in Table II. The DCBGR results are better than

those of DGR algorithm, while the DCBGR algorithm can save

on average 100X runtime compared with previous DGR algorithm.

For leakage only, DCBGR can achieve on average 31.73% leakage

power saving while DGR result is 10%. For NBTI only, DCBGR can

compensate on average 23.65% NBTI induced circuit degradation,

while DGR result is 16.56%. The best results in Table II are better

than the weighted results in Table IV, hence DCBGR algorithm can

achieve better results than the DGR algorithm for co-optimization.

From Table V, the results of larger circuits are also better than the

average level, which is consistent with our previous finding. From the

DGR and DCBGR results, the area overhead for leakage reduction

is larger than that for NBTI mitigation, since algorithm for leakage

will consider all the gates in the circuit while that for NBTI only

considers the critical paths.

VI. CONCLUSIONS

Power and reliability become two key design goals with technology

scaling down. In this paper, we have proposed two gate replacement

algorithms for leakage power and NBTI-induced aging effect mitiga-

tion based on our NBTI/Leakage co-simulation platform. Both DGR

algorithm and DCBGR algorithm are capable to achieve better results

than pure IVC technique. The DCBGR algorithm with a complexity

of O(n) is much faster than the DGR algorithm. We also analyze

the overhead of gate replacement technique. The area overhead for

leakage power reduction is much larger than that of NBTI mitigation.

Less than 5% of circuit delay at time 0 caused by gate replacement

techniques will lead to about 20% delay degradation saving compared

with the pure IVC technique. Furthermore, if more gates in the circuit

critical paths can achieve their best leakage power with all 1’s as

input, the circuit leakage power will be further reduced during the

NBTI optimization phase. Hence, for future work, constrained logic

synthesis combined with the gate replacement technique may lead to

better co-optimization results.

REFERENCES

[1] V. Huard, M. Denais, and C. Parthasarathy, “NBTI degradation: From physical

mechanisms to modelling,” Microelectron. Reliab., vol. 46, no. 1, pp. 1–23, 2006.

[2] D. K. Schroder and J. A. Babcock, “Negative bias temperature instability: Road to

cross in deep submicron silicon semiconductor manufacturing,” Journal of Applied

Physics, vol. 94, no. 1, pp. 1–18, 2003.

[3] S. Borkar, “Electronics beyond nano-scale cmos,” in Proc. DAC, 2006, pp. 807 –

808.

[4] M. Agarwal, B. C. Paul, Z. Ming, and S. A. M. S. Mitra, “Circuit failure prediction

and its application to transistor aging,” in VLSI Test Symposium, 2007. 25th IEEE,

2007, pp. 277–286.

[5] B. Paul, K. Kang, H. Kufluoglu, M. Alam, and K. Roy, “Impact of NBTI on the

temporal performance degradation of digital circuits,” IEEE Electron Device Lett.,

vol. 26, no. 8, pp. 560–562, 2005.

[6] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “An Analytical Model for Negative

Bias Temperature Instability,” in Proc. IEEE/ACM ICCAD, 2006.

[7] R. Vattikonda, W. Wang, and Y. Cao, “Modeling and minimization of pmos nbti

effect for robust nanometer design,” DAC, pp. 1047–1052, Jul. 2006.

[8] A. Abdollahi, F. Fallah, and M. Pedram, “Leakage current reduction in CMOS

VLSI circuits by input vector control,” IEEE Trans. on VLSI, vol. 12, no. 2, pp.

140–154, 2004.

[9] Y. Wang, H. Luo, K. He, R. Luo, H. Yang, and Y. Xie, “Temperature-aware nbti

modeling and the impact of input vector control on performance degradation,” in

Proc. DATE, 2007, pp. 546–551.

[10] J. Abella, X. Vera, and A. Gonzalez, “Penelope: The nbti-aware processor,” in

MICRO 2007, 2007, pp. 85–96.

[11] L. Cheng, L. Deng, D. Chen, and M. Wong, “A fast simultaneous input vector

generation and gate replacement algorithm for leakage power reduction,” Design

Automation Conference, 2006 43rd ACM/IEEE, pp. 117–120, July 2006.

[12] L. Yuan and G. Qu, “A combined gate replacement and input vector control

approach for leakage current reduction,” IEEE Trans. on VLSI, vol. 14, no. 2,

pp. 173–182, 2006.

[13] N. Jayakumar and S. Khatri, “An algorithm to minimize leakage through simul-

taneous input vector control and circuit modification,” DATE ’07, pp. 1–6, April

2007.

[14] W. Wang, V. Reddy, A. Krishnan, R. Vattikonda, S. Krishnan, and Y. Cao, “Com-

pact modeling and simulation of circuit reliability for 65nm cmos technology,”

IEEE Transactions on Device and Materials Reliability, vol. 7, no. 4, pp. 509–

517, 2007.

[15] S. Bhardwaj, W. Wenping, R. Vattikonda, A. Y. C. Yu Cao, and S. A. V. S.

Vrudhula, “Predictive modeling of the nbti effect for reliable design,” in Conference

2006, IEEE Custom Integrated Circuits, 2006, pp. 189–192.

[16] V. Huard, C. Parthasarathy, N. Rallet, C. Guerin, M. Mammase, D. Barge, and

C. Ouvrard, “New characterization and modeling approach for nbti degradation

from transistor to product level,” IEDM 2007., pp. 797–800, 10-12 Dec. 2007.

[17] T. Grasser, B. Kaczer, P. Hehenberger, W. Gos, R. O’Connor, H. Reisinger,

W. Gustin, and C. Schlunder, “Simultaneous extraction of recoverable and per-

manent components contributing to bias-temperature instability,” IEDM 2007., pp.

801–804, 10-12 Dec. 2007.

[18] B. Paul, K. Kang, H. Kufluoglu, M. Alam, and K. Roy, “Temporal Performance

Degradation under NBTI: Estimation and Design for Improved Reliability of

Nanoscale Circuits,” in Proc. DATE, vol. 1, 2006, pp. 1–6.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

